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Dynamic Interaction Fields in a

Two-Dimensional Lattice*
R. E. COLLINY, MEMBER, 1RE, AND W. H. EGGIMANN T

Summary—In the theory of artificial dielectrics and aperture
coupling in rectangular waveguides, a knowledge of the dynamic in-
teraction fields is required in order to evaluate the polarizing fields.
This paper presents suitable methods for evaluating the dynamic in-
teraction fields in a two-dimensional lattice. Both electric and mag-
netic dipoles are considered. The results are presented in closed
form apart from correction terms involving rapidly converging series.
Cross-polarization interaction constants are also evaluated.

INTRODUCTION

WO-DIMENSIONAL periodic lattice structures
Tare encountered in the field of artificial dielectric

media, aperture coupling in rectangular wave-
guides, and elsewhere. Fig. 1(a) illustrates a disk-type
artificial dielectric. Each plane array of disks may be
represented as an equivalent shunt susceptance B which
loads a transmission line periodically along the z direc-
tion. Fig. 1(b) illustrates an aperture in a transverse wall
in a rectangular guide, together with the images of the
aperture in the guide walls. The shunt susceptance of
planar arrays of the above type disks or apertures is
usually determined by using the small aperture theory
of Bethe (or its dual for the obstacle problem).! In this
theory, each obstacle or aperture is replaced by an
equivalent set of electric and magnetic dipoles, with
moments given by the product of the incident field and
a suitable polarizability constant which is dependent on
the obstacle geometry only.?2 A limitation of the simple
theory is that the obstacle size must be small and the
spacing must be large, so that interaction between
neighboring elements can be neglected.

In practice, it is usually desirable to employ such ele-
ment spacings that the mutual interaction cannot be
neglected. In such cases, the effective polarizing fields
are the sum of the incident field and the field radiated by
the induced dipoles in all the neighboring elements. For
sufficiently small element spacing, the interaction field
may be approximated by a static field. The evaluation
of the interaction constant for a static interaction field
has been carried out by Brown.? In this paper, suitable

* Received by the PGMTT, October 8, 1960. The work reported
in this paper was sponsored by AF Cambridge Res. Ctr. under con-
tract AF 19(604)3887 and is based on Sci. Rept. No. 12 issued under
this contract.

T Case Inst. Tech., Cleveland, Ohio.

t H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.,
vol. 66, pp. 163-182; February, 1944.

2 A. A. Oliner, “Equivalent circuits for small symmetrical longi-
tudinal apertures and obstacles,” IRE Trans. oN MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-8, pp. 72-80; January, 1960.

¢ J. Brownand W. Jackson, “The relative permittivity of tetrag-
onal arrays of perfectly conducting thin disks,” Proc. IEE, vol.
102, Pt. B, pp. 37-42; January, 1955.
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Fig. 1—Periodic arrays of similar elements.

methods for evaluating the dynamic interaction field in
closed form will be presented, and a restricted problem
will be analyzed in detail. However, it should be noted
that the methods of summing the series involved may be
applied without difficulty to a general two-dimensional
lattice with a field incident at any arbitrary angle.

AN ARRAY OF CIRCULAR DISKS

Fig. 2 illustrates a two-dimensional array of circular
conducting disks such as is encountered in the field of
artificial dielectric media. The spacing between disks is
a along the x axis and b along the v axis. A perpendicu-
lar polarized TEM wave is assumed incident at an angle
8;, relative to the z axis, in the xz plane. The incident
field is

Elnc = Ez/ = e“]hl'—r(ﬂ’

(1a)

/3
Hiy. = H, = . YiEine,

[}

(1b)

where =k, sin 8,, 'o=jko cos 0,, Y= (eo/uo)** In (1)
the x component of the magnetic field has not been writ-
ten down. This incident field induces y-directed electric
dipoles of moment P in each disk, as well as z-directed
magnetic dipoles of moment 37 in each disk. In view of
the nature of the incident field, the induced moment in
the disk at x=ma has a phase ¢ "¢ relative to the
dipole located at x=0. The effective fields acting to
polarize each disk are the sum of the incident fields plus
the interaction field due to the fields radiated (scattered)
by all of the neighboring disks. The interaction fields are
proportional to the dipole strengths, and hence also
proportional to the amplitude of the incident field.
The y-directed dipole moment P of each neighboring
disk produces a y-directed electric interaction field E,,
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Fig. 2—Two-dimensional array of circular disks.
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and a g-directed magnetic interaction field H,, at the
center of the disk, at the origin. Similarly, a z-directed
magnetic dipole A in each neighboring disk produces a
g-directed magnetic interaction field H,, and a y-
directed electric interaction field I7,,, at the center of
the disk at the origin. In addition, x- and y-directed
magnetic interaction fields and x- and z-directed electric
interaction fields are produced in general. This results in
additional dipole moments in each obstacle. These cross-
polarized dipole moments are small, however, since they
are produced by the interaction fields only and do not
have a contribution from the incident field. In most
practical cases, these additional dipole moments may
be neglected. The fact that they are present to some
extent shows that even an array of isotropic particles
in a cubical lattice structure will have anisotropic prop-
erties (structural anisotropy).*

In view of the linear relationship between the quanti-
ties involved, it is possible to write

P
E, = Eze + ELm = Cee - + CemZOM,

€0

(2a)

P
Hz = H’L€+ qu = CmeYO "’"‘J[“ CmmM;

€0

(2b)

where the interaction constants C.., Cem, Cume and Cun
are constants defined by these equations. The intrinsic
impedance Zy= (uo/€0)*/? and its reciprocal Yy is intro-
duced in order to make C,,, and C... have the dimensions
of meters=3. The total y-directed electric interaction
field is E,, while H; is the total z-directed magnetic inter-
action field. The effective field acting to polarize each
disk is the sum of the incident field plus the total inter-
action field.
The electric dipole moment induced in the disk in the
y direction is given by
P = aw|Eme + Eie + Eil
= aeoBine + @Cecl + aCom(uoen)/2M.  (4a)

Similarly, the magnetic dipole moment induced in the z
direction is found to be

+ Z. A. Kaprielian, “Anisotropic effects in geometrically isotropic
lattices,” J. Appl. Phys., vol. 29, pp. 1052—-1063; July, 1958.
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M = amHine + amcmmM + amcmeOLOeO)*l/ZP; (4b)

where «, and a, are the electric and magnetic polar-
izabilities of the disk, respectively. Solving for P and M
gives
(1 - amcmm)aee()Einc + aeamfocemZVOHinc
(1 - aecee)(l - amcmm)
(1 - aecee)amHinc + aeamcme I/v()Einc
(1 - aecee)(l - amcmm>

5a)
- aeamcemcmc

(5b)
- aeamcemcme

In practice, the terms @.Cem, &nChne, and oo, are small
so that (5a) and (5b) reduce approximately to the more
familiar expressions

P a€oBine (6)
= —— 3 ya
1 — a.Ces
amHinc
M=—— . (6b)
1 — amCmm

These results are equivalent to a neglect of the inter-
action between the electric and magnetic dipoles. The
analysis to follow will give expressions for the inter-
action constants Ce, Cem, Cme and Cnn [see (28), (31),
and (40)].

DERIVATION OF INTERACTION CONSTANTS

Consider an infinite two-dimensional array of mag-
netic dipoles Ma, with a relative phase e7*m¢ along the
x axis, From symmetry considerations, the scattered
field is such that conducting planes can be inserted into
the lattice at y= £5/2 as in Fig. 2.

The field scattered by a single s-directed magnetic
dipole, located at the origin, will be determined first.
This field may be found from a magnetic Hertzian po-
tential 11,/ as follows:

E = — joueV X al,, (7a)
H = kll/a, + VV-a,Il,/, (7b)

where
VAL, + kM, = — M8(x)8(y)8(s), (8)

and 8(x), etc., is the unit impulse function. Since E,
must vanish at y= +5/2, a suitable form for IL.” is

L = > fu(®) cos 2nmy/b, (9)
n=0
where f,(r) is a suitable function of »= (x?42*/? to be

determined. Substituting (9) into (8), multiplying both
sides by cos 2nwy/b, and integrating over —b/2<y<b/2

gives
1 9 o 2\ * €on
3t (e e o
r or dr b b

where 8(#) =6(x)8(z) and en.=1; =0 and €,=2 for
#>0. The solution to (10) which is bounded as r—® is
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[2(r) = anKoly.r) where K, is the modified Bessel func-
tion of the second kind, and v,2=(2uwr/b)2—ky2 As
r—0 the solution must have a logarithmic singularity of
strength —epn M /27wb In 7 and since Ko(y,r)——Inr as

r—0 the coefficient a, is given by
GOnM
_ (11)
21h

a7b =
Hence, the potential due to a single dipole is

M o0
Hzl = 2—; |:4K0(]'k01’) + 22 Ko("y,ﬂ’) Ccos 2}’L7‘ry/b:|, (12)
iy

n=1

since yy=7jko. The Bessel function K, with imaginary

argument is proportional to the Hankel function
H02(k07’). i
For dipoles at x=ma, m= +1, +2, - - -, and having

a relative phase exp (—jhma), the required potential is
readily obtained by using (12) and is

M & o
= Tb[ S e Rk /E T ma — 5 (13)
O L e

m=—o n=l

The prime means omission of the term 7 = 0. The double
series converges very rapidly, since b is limited to be less
than a half wavelength; hence, v, is real for >0 and
K, decays rapidly. The single series will be transformed
to a more rapidly converging form by an application of
the Poisson summation formula.

Consider the series

£

> Soma) = X Ko(jhev/z* + (ma)d).

m=—c0

(14

M==—00

To apply the Poisson summation formula, the following
Fourier transform is required

f e Ko(gkov/22 + u?)du

= Texp— il \/w—Q__k—OQ (15)

V' = ke?

According to the Poisson summation formula

o

> 12
2 So(ma) = — Y g(2mn/a),
a

m=-—c

(16)

m=—co

where g(w) is the Fourier transform of So(ux). Thus, (14)
becomes

5 Kb/ F Gral)
_ ks i exp — [z[ V' Cmr/a)? — kel '
VQmr/a)? — ket

Q& m=o
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Multiplying each term in (14) by e=#» replaces (2mm/a)
by (2mm/a)+h in the transformed series. Replacing
(ma) in (14) by (ma—x) is equivalent to multiplying
each term in the transformed series by e—2m/e, With
the aid of these operational formulas, it is found that

Z 6‘”””“[(0[]%0\/22 + (ma —W]

m=-—co
i —_—e
— e—]/za: Z e‘le(ma*x)Ko[ij\/ZZ + (7}’La — 1‘)2]
m=—ow
© e—I‘mlz|—]2m1rJ:/a
=g — 3 — ) (18)
0 m——co T
where

T2 = [Qmr/a) + k] — k.

The potential arising from dipoles at x=ma; m= +1,

+ 2, © oo, IMmay now be expressed as
M - 0 e Tnlzlg=i(ht2ma o)z

La= [_ R
27h 4 m—— Pm

— Ko(jhov/a® +-2%) +2 3/ 3 eritma

m=—w n=l1

<cos (2nmy/b) K o(yu/22 + (ma — W} (19)

To obtain the potential due to all the dipoles in the
lattice, except the dipole at the origin, the potential
from dipoleslocated at y=+mb;m=1,2, - - - ; x=2=0
must be added to (19). These dipoles are the images of
the dipole at the origin, and the partial potential con-
tributed by these is

M & exp — jhov/a? + 22 4 (mb — y)2
V24 2 (mb — )2

(20)

Consider next the field scattered from y-directed elec-
tric dipoles of moment P and having a relative phase
e *me, The scattered field may be obtained from a vec-
tor potential 4,/ with a single ¥ component by means
of the equations

E = (jope)  (ko'a, 4, + VV-a,4,), (21a)

B = VXa,4,/, (21b)
and

VIAS 4 koA = = jepPs(x)8(y)8(z),  (21c)

for a single dipole at the origin. The boundary condi-
tions on 4, are the same as those for II,’, and (21¢) is
similar to (8). Therefore, the solution for the total vector
potential 4, from all dipoles except the dipole at the
origin is the same as the solution for II,;+11,, but with
M replaced by jwueP. Thus,



1961

e—I‘mI z[e—j'(h+2m1r/a,)1:

jwugP |:7l' %

v 2mh -a—m=_w T,

— Ko(jhov/a + 30 + 2 3 20 et

m=—eo n=1

i,

m=—co

JwpoP [

; exp — jkov/x% 4 2% -+ (mb — y)2:|' (22)
™

Vx4 22 4 (mb — y)?

The y-directed interaction field E,, is given by

62
E,. = (joumoer) ™ <]€02 -+ j> Ay. (23)

9y

Using (22) and carrying out the operations indicated in
(23), placing x=vy=0, and letting 2 tend to zero, it is
found that

kozP T hsd ¢ Tmlzl
E;. = lim — g
2—0 2mwegh |: a mgw T, 1 )]
2P V] =3
> > cos (ma)y. 2 Ko(yama)
77'50 n=1 m=1
E e thomb i e Jeymb T
+ [4 k 24
Teo J L mb)? (m b)2 me1 (mb)? | -
Now
a ha ko2 — 2 U2
ST RS
2l m| = mr (2mm)?
L4 o[ ! } (25)
= —— — 1. N
2 ' m‘ T m?

Thus, the dominant part of the series

0 —Dm] 2|
p €

™
a

m=—w0 Pm

T o ! 6—2[m[1r|z[/a e—lﬂ zmla

”
“z;m=‘w2|m|7r/a E m

This series is readily summed by standard methods to
give®

—2rm|z|/a

2 s 2 el
m=1 m a a
—1n27r‘z[/a as z— 0. (26)
Also,
limKo(jkoizl)= - (V“l“ln].kOlz}/Z)
=0 =—'y—j1r/2—1nk0|Zl/2, (27>

5 R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill
Book Co., Inc., New York, N. Y.; 1960. See espec1a]1y Sec. A-6.
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where ¥ =0.577 is Euler’s constant. Thus, the logarith-
mic singularity due to the Bessel function Ko(jk(). z]) is
cancelled by the logarithmic singularity arising from the
dominant part of the series, 7.e. from (26).

In (24), the first series may be written as a dominant
series and a rapidly converging series. The series over
(mb)~? and (mb)~? are readily summed. After summing
these series and making use of (26) and (27), the follow-
ing final result is obtained:

z k02P|: a <1 47 > n <a 1 )
k12 T - T n T T T
Zdbéo ™ koa v j 2 \/ko — /’12
i 1 1 a
32
rré Fm P—m ma

> 37 va? cos (hma) Ko(y.ma)

ko?b*  ko*b*

96

+

(28)

This equation determines the dynamic interaction con-
stant C,.. The double series involving K¢ converges very
rapidly.

Determination of the interaction constant C,. re-
quires evaluation of the interaction field H,, at the

origin. This interaction field is given by
a4,
H, = Mo~
dx
= Lwili—j K > e Tmlzlgmitzmr i) ]im(f
27b & me——c Fm
]'ko\f . iy Z
+ T KR +2 20 2
m=—co n==l
.g—1hma ( " _>__|_, ma — 9(42_]
Va4 (ma — x)? " ( )
JwP

£} e 1k0rm e—ﬂmrm X
—jko—— =
47r = 7/m 7’m“ r’lﬂ

rui=g24x2++(mb—y)2

(29)

where r2=x2-+22, As x and 2

tend to zero,

wP
H., = lim La[

e—0 2

b+ 2mw/a

J_ Z omlat 1 T

& me—op Pm

— 4y i i sin (lzma)ynKlr(qf,,ma)]. {30)

n=1 m=1

a ha 1
(1= 5= 0Ga)
2 i m l T 2mw et

Now,

Fm¥1 =
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and hence the dominant part of the first series in (30) is
Z, R 2m7r< a _ ha? sgm)
S a \2 [ m! T (2mm)?
ha

—Zlmﬂzllu__q_
+ e 2[m]=

m=—c

while the correction series is
i [21%71‘ 2m7r< a ha? sgm>]
o LT'ma a \2|m|= (2mm)*
» h ha
B[
mzz_w T, 2 ’ m ‘ T

where sg m=1 for m>0 and —1 for m <0. The domi-
nant part of the series vanishes, since the terms are odd
functions of m. Thus, only the correction series and the

double series in (30) contribute, and the final result for
H;e iS

wP K h
Hze = —|:'_]

27h a '\/ko - h“
T &k 2me/a b — 2mw/a
T )
a m—1 T -

+ 4 Z Z v 8in (lzma)Kl('ynma):l - (31

n=1 m=1 0

The double series converges very rapidly and only one
or two terms is usually required. From (2b) it is seen
that H,,= Cn.YoP/€ and hence the right hand side of
(31) when divided by Y,P/e gives the interaction con-
stant Cy,.

The y-directed electric interaction field E,,, due to the
magnetic dipoles may be obtained from (31) by replac-
ing P by uodf. When this is done and (2a) is used, it is

found that
Cem = Cme- (32)

As a final step, the interaction constant C,» must be
found. The interaction field H,, is given by

62
H.n = <k02 + F) M., s=y=2=0, (33)

where 11, =II,;+11,. and II.; is given by (19) and IL.. by
(20). The second term in (33) gives

0%, MTIz =&
= lim — | — T, ¢~Tnlel
(92-’2 0 zl-—rf(l} 2mwh |: a mg—:w ¢
Ki(jko| 2
ke (Ko<jkol o)+ iﬂ)}
jko! 7

=53

7rb n=1 me=—co

—]hmaK1<,Ynma)

e—ﬂromb
+ J .
(mb)?

lml

M 0 k e——;komb
[’ ° (34)

(mb)*

27r m=1
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In order to evaluate the limiting value of this expression,
the dominant part of the first series must be found first.

Since
2lm| ko'a 1
—— hhsgm = 0 ),

Ty =
a | m| ?

m?
the series

T Xy

R

[LQ—
may be written as a dominant series,

™

)
N Z/ e—ZIm:lW/a[

2l m| ko’a
———+ hsgm —-“],
Q@ m——o a 4|ml

plus a correction series

0 2 k?
__I*O_'_M > [pm_ﬂll_hsngr*‘L]
& m——o a -Hmlr

™ -
= j— ko — Ii*

a

o 4 kZ
+1Z[rm+nm—ﬂ+ N]. (35)
4 m=1 a 2mw

The dominant part of the series sums to

(27r>‘ i me—Zrmr[zl/a - i

a =1

e—2m1r|2]/a

<77r> 1 k2[ rls| w3
- 4+ " lIn2sinh —_—]
4sinh?r|z| /a a a
1 7’ ko?
—_ +—1n27r[ | /a (36)
‘2[2 3a?
since

a?
(sinh?w|z| /o)1 — — as 3— 0.

2

mE
;

The limiting form of the Bessel function term in the first
part of (34) is
Ki(jko| 5| )]

Bo? [Kow'ko! z|) +—
jko| 2

Gkl %] 1 1]’

1
——>k02|:—l—~ln
2 2 2

as z2—0.
By adding the above to the series term (35) and (36),
the singular terms cancel and one obtains the result

M |: \/k A a? i ko2 n 4 vko® kolm
. - 4 g —— — g
200 | ’ 302 2 ke 2 7 4
ko? dmr ko’a
4 m=1 a 2mm

after multiplying by M /27b.
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The remaining part of (34) may be summed to give

M i i — cos (ma) Ki(y.ma)

Th 2l me1 Mma

M [1 PR + ko's? +
—_ . e n
20b? 2 ’ i

.(W k obf) ko3b$>:l
I\ ™ 6 /1

The only part left to be evaluated to obtain H,, is the
term koMI,. The evaluation of this term is similar to the
evaluation of ky24, given earlier. The final result for
x=y=g=0, is

ko'b?
96

(38)

Bo2TT i l: 1 i + v+ -
2 = —Iin — T T s s
0 b ko v '7 2 J a kot — hq
T 1 1 e
+— (— T T _>
a mgl Pm F—m mm
+ 42, D cos (lzma)Ko(Ynmd)]
n=1 m=1
koM kob
_ li_]_—l—]—~+ln251nkob/2:| (39)
27h

The field H;, is given by the sum of (37), (38) and
(39) and is equal to Cnn2l. Hence, the interaction con-
stant Cun is given by

c 1 '|:1.2+ w? )+ ko'b?
T T o e T 3e K
TN k b):l
—_— — cos
2 k02(l ’
kolr 2 |: 1 1 T 4+ T a dmw
- —+ + — - :|
a Zl T. T'_. ko? 2mw ko’a
— 4k2 > D cos (hma) [Ko(ynma) — Kl('ynma)]
n=1 m=1 m 020,

koD wh?
.
3 alke® — BH)?
This completes the derivation of the dynamic field inter-
action constants.

When the lattice spacings ¢ and b are small compared
with the wavelength Ny, static field interaction con-
stants may be used. These may be obtained by placing
ko? equal to zero in the expressions for C.., Cem, Cme and
Cnm. It is readily found that
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1 2 0 0
Coi)l = — — — Z > n*Ko(2umwa/b),  (4la)
7rb3 b3 n=1 m=1
Cen' = Cnd =0, (41b)
0.6 s
Cmm, -
wb® 64
4 = &0 n
—— > > — K\(2umma/b), (41¢)
abZ n=1 m=1 M

where the prime denotes static interaction constants.
The static-field case Cu»’ should be symmetrical in the
variables @ and b because of the symmetry involved in
the two-dimensional lattice structure. Although (41c)
seems to violate this condition, it may be shown that
Con' as given by (41c¢) is also equal to®

Cmm, =
[b Ko(2nmwa/b) + — Ko(szmrb/a)-J (42)

CONCLUSIONS

Suitable methods for evaluating the dynamic inter-
action fields in a two-dimensional lattice have been
given. The final results for a particular case have been
presented in terms of a set of interaction constants
whose numerical values are readily computed. Refer-
ence to (5) shows that interaction fields will be of im-
portance whenever the product of the element polar-
izability and the appropriate interaction constant is not
negligible, compared to unity. This usually implies ele-
ments (such as disks and apertures) which are an ap-
preciable {raction of a wavelength in size. For such ele-
ments, the polarizabilities are not, in general, given
very accurately by the static formulas. Full advantage
in the use of the dynamic interaction field analysis pre-
sented here is therefore limited to those elements for
which higher order approximations to the polarizabili-
ties are available. For the circular disk and aperture,
the polarizabilities «, and a,, have been evaluated up to
and including terms in (k¢7)? where 7 is the disk radius.”
Application of the results presented here will be dis-
cussed in a future paper.
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