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Dynamic Interaction Fields in a

TwoODimensional Lattice*

R. E. COLLIN~, MEMBER, IRE, AND W. H. EGGIMANN~

Summary—In the theory of artificial dielectrics and aperture

coupling in rectangular waveguides, a knowledge of the dynamic in-

teraction fields is required in order to evaluate the polarizing fields.

This paper presents suitable methods for evaluating the dynamic in-

teraction fields in a two-dimensional lattice. Both electric and mag-

netic dipoles are considered. The results are presented in closed

form apart from correction terms involving rapidly converging series.

Cross-polarization interaction constants are also evaluated.

INTRODUCTION

T

WO-DIMENSIONAL periodic lattice structures

are encountered in the field of artificial dielectric

media, aperture coupling in rectangular wave-

guides, and elsewhere. Fig. 1 (a) illustrates a disk-type

artificial dielectric. Each plane array of disks may be

represented as an equivalent shunt susceptance B which

loads a transmission line periodically along the z direc-

tion. Fig. 1 (b) illustrates an aperture in a transverse wall

in a rectangular guide, together with the images of the

aperture in the guide walls. The shunt susceptance of

planar arrays of the above type disks or apertures is

usually determined by using the small aperture theory

of Bethe (or its dual for the obstacle problern).1 In this

theory, each obstacle or aperture is replaced by an

equivalent set of electric and magnetic dipoles, with

moments given by the product of the incident field and

a suitable polarizability constant which is dependent on

the obstacle geometry only. z A limitation of the simple

theory is that the obstacle size must be small and the

spacing must be large, so that interaction between

neighboring elements can be neglected.

In practice, it is usually desirable to employ such ele-

ment spacings that the mutual interaction cannot be

neglected. In such cases, the effective polarizing fields

are the sum of the incident field and the field radiated by

the induced dipoles in all the neighboring elemel~ts. For

sufficiently small element spacing, the interaction field

may be approximated by a static field. The evaluation

of the interaction constant for a static interaction field

has been carried out by Brown.3 In this paper, suitable

* Received by the PGMTT, October 8, 1960. The work reported
in this paper was sponsored by AF Cambridge Res. Ctr. under con-
tract AF 19(604)3887 and is based on Sci. Rept. No. 12 issued under
this contract.

T Case Inst. Tech., Cleveland, Ohio.
1 H. A. Bethe, “Theory of diffraction by small holes, ” Phys. Rev.,

vol. 66, pp. 163–182; February, 1944.
2 A. A. Oliner, “Equivalent circuits for small symmetrical longi-

tudinal apertures and obstacles, ” IRE TRANS. ON MICROWAVE
THEORYANDTECHNIQUES,vol. MTT-8, pp. 72-80; January, 1960.

‘ J. Brown and W. Jackson, “The relative permittivity of tetrag.
onal arrays of perfectly conducting thin disks, ” Proc. IEE, VOI.

102, Pt. B, pp. 37–42; January, 1955.
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Fig. l—Periodic arrays of similar elements.

methods for evaluating the dynamic interaction field in

closed form will be presented, and a restricted problem

will be analyzed in detail. However, it should be noted

that the methods of summing the series involved may be

applied without difficulty to a general two-dimensional

lattice with a field incident at any arbitrary angle.

AN AmwY OF CIRCULAR DISKS

Fig. 2 illustrates a two-dimensional array of circular

conducting disks such as is encountered in the field of

artificial dielectric media. The spacing between disks is

a along the x axis and b along the y axis. A perpendicu-

lar polarized TENI wave is assumed incident at an angle

19i, relative to the z axis, in the xz plane. The incident

field is

where lZ=kO sin 0,, ro=jkO cos 0,, YO= (eO/pO) ’/’. In (1)

the x colnponent of the magnetic field has not been writ-

ten down. This incident field induces y-directed electric

dipoles of moment P in each disk, as well as z-directed

magnetic dipoles of moment IU in each disk. In view of

the nature of the incident field, the induced moment in

the disk at x = ma has a phase e–J~~m relative to the

dipole located at x = O. The effective fields acting to

polarize each disk are the sum of the incident fields plus

the interaction field due to the fields radiated (scattered)

by all of the neighboring disks. The interaction fields are

proportional to the dipole strengths, and hence also

proportional to the amplitude of the incident field.

The y-directed dipole moment P of each neighboriilg

disk produces a y-directed electric interaction field E,.
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Fig. 2—Two-dimensional array of circular disks.

and a z-directed magnetic interaction field H,, at the

center of the disk, at the origin. Similarly, a z-directed

magnetic dipole JM in each neighboring disk produ’ces a

z-directed magnetic interaction field H,~ and a y-

directed electric interaction field 11,~ at the center of

the disk at the origin. In addition, x- and y-directed

magnetic interaction fields and x- and z-directed electric

interaction fields are produced in general. This results in

additional dipole moments in each obstacle. These cross-

polarized dipole moments are small, however, since they

are produced by the interaction fields only and do not

have a contribution from the incident field. In most

practical cases, these additional dipole moments may

be neglected. The fact that they are present to some

extent shows that even an array of isotropic particles

in a cubical lattice structure will have anisotropic prop-

erties (structural anisotropy).4

In view of the linear relationship between the quanti-

ties involved, it is possible to write

H, = H%. + HZ. = C., Yo K + CJI, (2b)
co

where the interaction constants C.., c ,~, C., and C~*

are constants defined by these equations. The intrinsic

impedance ZO = (,uo/eO) 112 and its reciprocal YO is intro-

duced in order to make C,., and C~, have the dimensions

of meters-3. The total y-directed electric interaction

field is E,, while Hi is the total z-directed magnetic inter-

action field. The effective field acting to polarize each

disk is the sum of the incident field plus the total inter-

action field.

The electric dipole moment induced in the disk in the

y direction is given by

—– a6~oEi.C + a.C~.P + ~eCem(/LOEO)’/2~. (4a)

Similarly, the magnetic dipole moment induced in the z

direction is found to be

4 Z. A. Kaprielian, {[A1li~otropic effects in geometrically isOtrOPic

lattices, ” ~. Appl. Phys., vol. 29, pp. 1052-1063; July, 1958.

M = a~Hin. + anCwt,nM + ~mCme(LLOCO~I-1’2Pj (~b)

where ae and am are the electric and magnetic polar-

izabilities of the disk, respectively. Solving for P and AI

gives

In practice, the terms a.C,~, a~C~,, and a,a~ are small

so that (5a) and (5b) reduce approximately to the more

familiar expressions

(6a)

(6b)

These results are equivalent to a neglect of the inter-

action between the electric and magnetic dipoles. The

analysis to follow will give expressions for the inter-

action constants C,,, Ce~, Cm, and C~~ [see (28), (31),

and (4o) ].

DERIVATION OF INTERACTION CoNs’rANTs

Consider an infinite two-dimensional array of mag-

netic dipoles Ma, with a relative phase e–jhma along the

x axis. From symmetry considerations, the scattered

field is such that conducting planes can be inserted il~to

the lattice at y = ~ b/2 as in Fig. 2.

The field scattered by a single z-directed magnetic

dipole, located at the origin, will be determined first.

This field may be found from a magnetic Hertzian po-

tential 111 as follows:

E = — jWI.LOV X aJI.’, (7a)

H = komz’a. + vv. aJI,’, (7b)

where

‘V’IIZ’ + ko211z’ = – M8(x)ti(y)~(z), (8)

and ti(x), etc., is the unit impulse function. Since Ez

must vanish at y = t b/2, a suitable form [or II,’ is

~.’ = f f.(v) COS2mry/b, (9)
%=0

where j.(r) is a suitable function of r = (.x2 +zZ) lIZ to be

determined. Substituting (9) into (8), multiplying both

sides by cos 2n~y/b, and integrating over – b/2 <y <b/2
gives

1 a ajn
--cii+[ko’-(?mfn= -%(’) ’10)r 13r

where 8(r) = ~(x) ti(z) and eon= 1; n=o arid EO. = 2 for

n >0. The solution to (10) which is bounded as r—+ oc is
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fro(r) = an~”(~~~) where KO is the modified Bessel func-

tion of the second kind, and T.2 = (2nr/b)2 – L?02.As

?~O the solution must have a logarithmic singularity of

strength — ~O,,M/2~b in v and since A’O(y,,V)~— in r as

v~O the coefficient a. is given by

Eo.kf
a,, = —— .

2rb
(11)

Hence, the potential due to a single dipole is

[ 1
Hz’ = :; Ko(jkoY)+ 25 Ko(yr,f) cos 2nry/b , (12)

,,=1

since To =jko. The Bessel function K. with imaginary

argument is proportional to the Hankel function

HIJ’(ko7’).

For dipoles at x=ma, m= +1, f 2, . ~ . , and having

a relative phase exp ( —jkma), the required potential is

readily obtained by using (12) and is

M
H?, = ~

[

~:! ,-,,.,‘Ko(jkov’z2 + (ma – X)2) (13)
m==.co

+ 2 ~’ ~ e-ihma cos (2vz~y/b)KO(7~<& + (ma – .U)2)].
m=—m.=l

The prime means omission of the term m = O. The double

series converges very rapidly, since b is limited to be less

than a half wavelength; hence, ~. is real for n >0 and

K. decays rapidly. The single series will be transformed

to a more rapidly converging form by an application of

the Poisson summation formula.

Consider the series

5 ~o(~~) = 5 Ko(jko<zz + (ma)’). (14)
m=—. ~=—m

To apply the Poisson summation formula, the following

Fourier transform is required

According to the Poisson summation formula

where g(w) is the Fourier transform of SO(u).

becomes

(16)

Thus, (14)

——
i KO(jkO<Z2+ (ma)’)

m=—.

Multiplying each term in (14) by e-j’fi” replaces (2m~/a)

by (2wnr/a) + k in the transformed series. Replacing

(ma) in (14) by (ma – x) is equivalent to multiplying

each term in the transformed series by e–j~~rci”. With

the aid of these operational formulas, it is found that

~ e-’’’””KO[jkO<(~a(~a—– x)’]
.=—w

= e–Jhz g e-, (,, rna-.)Ko [j~o<~+—@- t) Z]

m=—.

e–jhz ?
5 :%= ~

a .=–w m

where

rm’ = [(2m~/a) + h]’ – k,2.

The potential arising from dipoles at x = ma; m = ~ 1,
*2, ..., may now be expressed as

[

e– r~l .1e–i (h+2mr/a)..

rIz, =:i:~—

mm r.

. .—.——
. KO(jkoti~z + ~~) + 2 ~’ ~ e–jk..

m=—~ ~=1

(18)

——

1. cos (2mry/b)KO(7n@2 + (ma — X)2) . (19)

To obtain the potential due to all the dipoles in the

lattice, except the dipole at the origin, the potential

from dipoles 10cated aty=tmb; m=l,2, . . . ;x=z=(l

must be added to (19). These dipoles are the images of

the dipole at the origin, and the partial potential con-

tributed by these is

——
M “ , exp – jko<xz + z’ + (mb – y)’

IIz2=G~
~xz + Z2 + (mb – y)z

. (20)
mm

Consider next the field scattered from y-directed elec-

tric dipoles of moment P and having a relative phase
e—jhrncz . The scattered field may be obtained from a vec-

tor potential AU’ with a single y component by means

of the equations

E = (jquO&’(ko2auAd’ + VV .aUAV’), (21a)

B = V)(aUAu’, (21b)

and

v~~,’ + ,&’A,’ = – jo.wol’d(x)a(y) ~(z’), (21C)

for a single dipole at the origin. The boundary condi-

tions on Au’ are the same as those for II.’, and (21c) is

similar to (8). Therefore, the solution for the total vector

potential Au from all dipoles except the dipole at the

origin is the same as the solution for IIZl+~ZZ but with

ill replaced by jwpOP. Thus,
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. .

. cos (2mry/b)Ko(7.<z2 + (ma – *)2)
1

jldMoP
+—

[

“ , exp — jk&x2 + Zz + (mb — y~
z

1
(22)

4-T m=–. 4X2 + Z’ + (mb – y)a “

The y-directed interaction field E,, is given by

E,, = (jq.LOCO)-l

0“2+3’

(23)

Using (22) and carrying out the operations indicated in

(23), placing x = y = O, and letting z tend to zero, it is

found that

k02P IT m e–rffl’l
E~e = lim —

,+0 2reob
[;nt~m–F– - Kd~kO I sI )]

m

—::,5, Cos(kmu)’Yn2Ko(7nwJJ)

P

[

cc e–~k~mb e–jk”mb

+— 4jko ~
1

—+45–—
~=, (mb)2 ~=1 (rob)’ “

(24)
4i7Eo

iwow

[

ha koz – kz —1/2

—— l+—–rm–l = a

2\?n[7r mm (2m7r) 2 a’ 1

a
—

[1
+0;.

21m\7r

Thus, the dominant part of the series

(25)

is

This series is readily summed by standard methods to

give5

+—ln27r\z\/aasz+O. (26)

Also,

lim KO(jkOl z] ) = – (y + lnjkol zl /2)
z+0

—– –v–jr/2–lnkO\z l/2, (27)

E R. E. CoIliu, “Field Theory of Guided ~~aves, ” McGraw-Hill
Book Co., Inc., New York, N. Y.; 1960. See especially Sec. A-6.

where ~ = 0.577 is Euler’s constant. Thus, the logarith-

mic singularity due to the Bessel function lCO(jkOl z] ) is

cancelled by the logarithmic singularity arising from the

dominant part of the series, i.e. from (26).

In (24), the first series may be written as a dominant

series and a rapidly converging series. The series over

(wtb)-2 and (rob)-’ are readily summed. After summing

these series and making use of (26) and (27), the follow-

ing final result is obtained:

( )1
+5 +++–;

m=l m .

P

[

kozbz k02b’ k04b4
+— 1.2 – —2—lnk,b + ~+~

qb3

( k03b3
: k~’bz – —–j

)1
=cee~.

6 ~o
(28)

This equation determines the dynamic interaction con-

stant C... The double series involving A’O converges very

rapidly.

Determination of the interaction constant C~,, re-

quires evaluation of the interaction field H,. at the

origin. This interaction field is given by

jmP

[

k i- 2m7r/a
—

2~b
–j I ~ e–rml:le–J (}6+2m./. )z —

a .=_. rm -

where T2 = .i+zz, ~~z = z~+x~+(mb —y)z. .% x and z

tend to zero,

1– 4j ~ ~ sin (hma)y.Kl(~.ma) . (30)
,,=1 m=l

Now,

2m(1-i3+”(+)’
r,n–l = — a
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and hence the dominant part of the first series in (30) is In order to evaluate the limiting value of this expression,

5
m,=-.

2mT a
#17n..l/. __

a ( 21?n]T–

J3a2sg m

(2m7r) 2 )

ka
+ ~’ ~–21mTzl/.

In=.@ 21m]7r’

while the correction series is

the dominant part of the first series must be found first.

Since

21m\7r k~’a
r. = +ksg Trl–

()
+o~,

a 4[m[7r m’

the series

.

2 [––
2m~ 2m7r a

(

ka~ sg m

)1

~ ~~~ rmdmz

.=.. rma – a 21mlr– (2m7r)’

[

J2a may be written as a dominant series,
+ ~’ ;.

.-—. m 12]47r’

[
3 ~f &lm21T/11 21 ‘n] ‘+ /*sgm _ ‘“’a

where sg m = 1 for m >0 and — 1 for m <O. The domi- a ~=–m a 141m17r ‘

nant part of the series vanishes, since the terms are odd

functions of m. Thus, only the correction series and the
plus a correction series

double series in (30) contribute, and the final result for r

[

21m17r k“~a

Hi. is
—rO+~~’ rn– –ksgrn+

a a ~=_w a 41m17r 1

(lZ +- 2m7r/a h – 2m7r/a
+:5 r + r_ )

a ~=1 m m [

4m7r koza
+~~ rm+r-m– —+——

1
(35)

a ~=1 a 2mir “

.

1

cmemP
+ 45 X -in sin (ltma)Kl(7,,ma) = —k~ “

(31) The dominant part of the series sums to

,“=1 m=l

()

‘~ ‘ ~me_,n7,Z,,a ko’ ,-~m~lz,,.

The double series converges very rapidly and only one a ~=1 22 ~

or two terms is usually required. From (2b) it is seen
2X 2

()

that H,e = C~, YoP/eo and hence the right hand side of = _ 1

[

~1~1 ~lzl

(31) when divided by YoP/cII gives the interaction COU- u
+; ln2sinh ———

4sinh2~]zl/a a a 1
stant C~,.

The y-directed electric interaction field E,~ due to the ~ _

magnetic dipoles may be obtained from (31) by replac-
1~12-~+~ln2Tlzl/~,

(36)

ing P by POJIT. When this is done and (2a) is used, it is
since

found that

Cem= cm.. (32) (sinh’. I z I /a)-’+fi – ~ asz+O.
~

As a final step, the interaction constant C~~ must be
,,

found. The interaction field H,~ is given by The limiting form of the Bessel function term in the first

part of (34) is

where IIZ = IIzl +IIZZ and 11,1 is given by (19) and 11.a by

(20). The second term in (33) gives

&f w jkoe–?lcomb

~ ~~~ [–(rob)’

e–,ko,rtb

—

1
—+––– .

(rob) 3
(34)

as z~O.

By adding the above to the series term (35) and (36),

the singular terms cancel and one obtains the result

M

[
~ jZ~ko’ _ ~,_ ~z

yko~
~++hl; __

k022r

a 2
– j —4—

k02

(

4m7r ko’a
~ +Z5 rm+r-m– —+———

)1
(37)

a ,X=1 a 2m7r ‘

after multiplying by lf/27rb.
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The remaining part of (34) may be summed to give

2M””’y.
~b ~~1 ~~, ;acos (llma)~l(7nma)

——

M

[

k~’b’ k~zbz k~’b’
. — l.2– —ln kOb+

27rb3 2
~+y

(38)

The only part left to be evaluated to obtain H,~ is the

term k0211e.The evaluation of this term is similar to the

evaluation of k~2AV given earlier. The final result for
~=y=z=(),is

+ 4 jj ~ cos (kma)Ko(~nma)
.=l ?n=l 1

ko’ill

[

. kob
—

2rb 1‘l~+j~+ln2sinkOb/2 . (39)

The field Him is given by the sum of (37), (38) and

(39) and is equal to C~~ilf. Hence, the interaction con-

stant C~~ is given by

1 ‘ 1.2
c

-{[

k04b2
. . . = — ~+:+: (1–7)+T

2rb

ko’ 87r
+Yln — (1 – COSkob)

k02ab 1

[
– 4k02 ~ ~ cos (hrna) KO(7~wa) – > Kl(-y.ma)

12=17f,=l mkoza 1
(40)

This completes the derivation of the dynamic field inter-

action constants.

When the lattice spacings a and b are small compared

with the wavelength Ao, static field interaction con-

stants may be used. These may be obtained by placing

ko’ equal to zero in the expressions for C.., C,~, Cm. and

cmm.It is readily found that

Cem’= cm: = o,

0.6
c ‘=–z–~mm

6a2b

115

(-l,la)

(41b)

(MC)

where the prime denotes static interaction constants.

The static-field case C~~’ should be symmetrical in the

variables a and b because of the symmetry involved in

the two-dimensional lattice structure. Although (41c)

seems to violate this condition, it may be shown that

C~~’ as given by (41c) is also equal toG

CONCLUSIONS

Suitable methods for evaluating the dynamic inter-

action fields in a two-dimensional lattice have been

given. The final results for a particular c,~se have been

presented in terms of a set of interaction constants

whose numerical values are readily computed. prefer-

ence to (5) shows that interaction fields will be of im-

portance whenever the product of the element polar-

izability and the appropriate interaction constant is not

negligible, compared to unity. This usually implies ele-

ments (such as disks and apertures) which are an ap-

preciable fraction of a wavelength in size. For such ele-

ments, the polarizabilities are not, in general, given

very accurately by the static formulas. Full advantage

in the use of the dynamic interaction fielcl analysis pre-

sented here is therefore limited to those elements for

which higher order approximations to the polarizabili-

ties are available. For the circular disk and aperture,

the polarizabilities ae and am have been evaluated Ulp to

and including terms in (kor)z where r is the disk radius.7

Application of the results presented here will be dis-

cussed in a future paper.
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1960.


